Sains Malaysiana 53(8)(2024): 2003-2012
http://doi.org/10.17576/jsm-2024-5308-22
Kajian Histeresis Feroelektrik dan Pengutuban Dinamik bagi Seramik (Ba1-xCax)(Zr0.025Ti0.975)O3 dengan Penggantian Kecil Ca
(Ferroelectric Hysteresis and Dynamic
Polarization Studies of Lower Ca-substituted (Ba1-xCax)(Zr0.025Ti0.975)O3 Ceramics)
NUR SOLEHAH ALI1,
NOR HUWAIDA JANIL @ JAMIL1, NOR AMALINA AHMAD1,2,
MOHAMMAD HAFIZUDDIN HJ JUMALI1,* &
ZALITA ZAINUDDIN1
1Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Pusat
Pengajian Pra-Universiti, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota
Samarahan, Sarawak, Malaysia
Diserahkan: 6 Februari 2024/Diterima: 24 Jun 2024
Abstrak
Penyelidikan ini dijalankan untuk mengkaji kesan penggantian kecil Ca terhadap sifat feroelektrik seramik (Ba1-xCax)(Zr0.025Ti0.975)O3 (BCZT). Seramik BCZT disediakan menggunakan kaedah tindak balas keadaan pepejal dan disinter pada suhu 1350 °C selama 2 jam. Analisis XRD menunjukkan semua seramik BCZT mempunyai fasa tunggal yang stabil dengan struktur hablur tetragon. Walaupun seramik Ba(Zr0.025Ti0.975)O3 (BZT) tulen (x = 0.000) menunjukkan ketumpatan tertinggi iaitu 98.0%, saiz butiran yang paling besar diperoleh bagi seramik BCZT dengan komposisi x =
0.025. Seramik BCZT dengan penggantian Ca yang terendah menunjukkan sifat piezoelektrik dan feroelektrik yang lebih baik berbanding seramik dengan kandungan Ca yang lebih tinggi. Ujian medan elektrik berulang menunjukkan kestabilan dinamik serta sifat kebangkitan bagi seramik BCZT dengan x = 0.025 dan 0.050.
Kata kunci: BaTiO3 dan titanat; medan elektrik berulang; sifat piezoelektrik; tindak balas keadaan pepejal
Abstract
This research was conducted to study the effects of lower Ca substitution on
the ferroelectric properties of (Ba1-xCax)(Zr0.025Ti0.975)O3 (BCZT) ceramics. BCZT ceramics were prepared using the solid-state reaction
method and sintered at 1350 °C for 2 h. XRD analysis shows that all BCZT
ceramics have a stable single phase with tetragonal crystal structure. Although
pristine Ba(Zr0.025Ti0.975)O3 (BZT) ceramic (x = 0.000) displays the highest density of 98.0%, the largest grain size was
obtained in BCZT ceramics with x = 0.025. BCZT ceramic with the lowest
Ca substitution exhibits better piezoelectric and ferroelectric properties
compared to ceramics with higher Ca contents. The repetitive electric fields
test shows the dynamic stability and wake-up behavior for BCZT ceramics with x = 0.025 and 0.050.
Keywords: BaTiO3 and titanates;
piezoelectric properties; repetitive electric fields, solid state reaction
RUJUKAN
Acosta, M., Novak, N., George, J. & Rödel,
J. 2015.
Mechanisms of electromechanical response in (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics. Applied Physics Letters 107: 142906-5.
Bai, W.F., Chen, D.Q., Li, P., Shen, B., Zhai,
J.W. & Ji, Z.G. 2016. Enhanced electromechanical properties in <00l>-textured (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoceramics. Ceramics International 42: 3429-3436.
Castkova, K., Maca, K., Cihlar, J., Hughes, H., Matoušek, A., Tofel, P.,
Bai, Y. & Button, T. 2015. Chemical synthesis, sintering
and piezoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 lead-free ceramics. Journal of the
American Ceramic Society 98(8): 2273-2280.
Coondoo, I., Panwar, N., Alikin, D., Bdikin, I., Islam, S.S., Turygin,
A., Shur, V.Y. & Kholkin A.L. 2018. A
comparative study of structural and electrical properties in lead-free BCZT
ceramics: Influence of the synthesis method. Acta Materialia 155: 331-342.
Dai, B., Hu, X., Yin, R., Bai, W., Wen, F., Deng, J., Zheng, L., Du, J.,
Zheng, P. & Qin, H. 2017. Piezoelectric grain-size effects of BaTiO3 ceramics under
different sintering atmospheres. Journal
of Materials Science: Materials in Electronics 28: 7928-7934.
Fan, Z., Koruza,
J., Rödel, J. & Tan, X. 2018. An ideal amplitude
window against electric fatigue in BaTiO3-based lead-free
piezoelectric materials. Acta Materialia 151: 253-259.
França, E., Romanholo,
P., Simões, S., Falcão, E.,
Franco, A. & Machado, F. 2021. Enhancing the electrical properties of NBT
ceramics by the addition of small amounts of Yb. Journal of Alloys and Compounds 873:
159845-7.
Fu, D. & Itoh, M. 2015.
Role of Ca off-centering in tuning ferroelectric phase transitions in Ba(Zr,Ti)O3 system. Ferroelectric Materials - Synthesis and Characterization. First ed. Croatia. InTech.
Gao, J., Hu, X., Zhang, L., Li,
F., Zhang, L., Wang, Y., Hao, Y., Zhong,
L. & Ren, X. 2014. Major contributor to the large piezoelectric response
in (1-x)Ba(Zr0.2Ti0.8)O3-x(BaCa0.3)TiO3 ceramics: Domain wall motion. Applied
Physics Letters 104(205): 252909-5.
Genenko, Y.A., Glaum,
J., Hoffmann, M.J. & Albe, K. 2015. Mechanisms of
aging and fatigue in ferroelectrics. Materials
Science and Engineering: B 19: 52-82.
Guo, F.Y., Cai,
W., Gao, R.L., Fu, C.L., Chen, G., Deng, X.L., Wang, Z.H. & Zhang, Q.W.
2019. Microstructure, enhanced relaxor like behavior
and electric properties of (Ba0.85Ca 0.15)(Zr0.1-xHfxTi0.9)O3 ceramics. Journal of Electronic Materials 48: 3239-3247.
Hao, J., Li, W., Zhai, J. & Chen, H. 2018. Progress in high-strain
perovskite piezoelectric ceramics. Materials
Science and Engineering: R: Reports 135: 1-57.
Izzuddin, I., Jumali,
M.H.H., Zalita, Z., Huwaida,
J.N. & Awang, R. 2016. Influence of crystal
structural orientation on impedance and piezoelectric properties of KNN ceramic
prepared using sol-gel method. Sains Malaysiana 45(8): 1281-1287.
Jamil, N.H.J. 2022. Kebangkitan sifat feroelektrik dalam seramik-fero bebas plumbum BaTiO3 dengan ubah suai unsur Ca dan Zr. Tesis Dr. Fal, Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia (Tidak diterbitkan).
Jamil, N.H.J., Zainuddin, Z., Jumali, M.H.H., Izzuddin, I. & Nadzir, L.
2022. Tetragonal tungsten bronze phase potential in increasing the
piezoelectricity of sol-gel synthesized (K0.5Na0.5)1-xLixNbO3 ceramics. Ceramics International 48(7): 9324-9329.
Jamil, N.H.J., Jumali, M.H.H., Zainuddin, Z., Izzuddin, I. & Pojprapai, S.
2019. Penentuan parameter optimum bagi rawatan pengutuban elektrik ke atas seramik-piezo (BaTiO3) menggunakan sistem buatan sendiri. Sains Malaysiana 48(2): 425-433.
Jian, X., Lu, B., Li, D., Yao,
Y., Tao, T., Liang, B., Guo, J., Zeng, Y., Chen, J.
& Lu, S. 2018. Direct measurement of large electrocaloric effect in Ba(ZrxTi1-x)O3 ceramics. ACS
Applied Materials & Interfaces 44(16): 19764-19770.
Jumali, M.H.H., Mohd,
M.R., Wee, N.Y., Yahaya, M. & Salleh,
M.M. 2010. Kelakuan pengesanan tekanan bagi seramik natrium
bismut titanat. Sains Malaysiana 39(4): 621-626.
Kang, S.J.L. 2005. Sintering; Densification, Grain Growth and
Microstructure. First ed. Oxford: Butterworth-Heinemann.
Kang, W., Zheng, Z., Li, Y.
& Zhao, R. 2019. Study on piezoelectric, dielectric and dispersive phase
transition of BaTiO3–BaZrO3–CaTiO3 ceramics. Journal of Materials Science: Materials in
Electronics 30(17): 16244-16250.
Li, S.B., Wang, C.B., Li, L.,
Shen, Q. & Zhang, L.M. 2018. Effect of annealing temperature on structural
and electrical properties of BCZT ceramics prepared by plasma activated
sintering. Journal of Alloys and
Compounds 730: 182-190.
Liu, W. & Ren, X. 2009.
Large piezoelectric effect in Pb-free ceramics. Physical Review Letters 103: 257-602.
Liu, Y., Chang, Y., Sun, E.,
Li, F., Zhang, S., Yang, B., Sun, Y., Wu, J. & Cao, W. 2018. Significantly
enhanced energy harvesting performance and superior fatigue-resistant behavior
in [001]c-textured BaTiO3 based lead-free piezoceramics. ACS Applied Materials & Interfaces 10(37): 31488-31497.
Liu, Y.C., Chang, Y.F., Li, F.,
Yang, B., Sun, Y., Wu, J., Zhang, S.T., Wang, R.X. & Cao, W.W. 2017.
Exceptionally high piezoelectric coefficient and low strain hysteresis in
grain-oriented (Ba,Ca)(Ti,Zr)O3 through integrating crystallographic
texture and domain engineering. ACS Applied
Materials & Interfaces 9: 29863-29871.
Mane, S., Tirmali,
P. & Kulkarni, S. 2018. Hybrid microwave sintering and shifting of Tc in lead-free ferroelectric
composition x(Ba0.7Ca0.3TiO3)-(1-x)(BaZr0.2Ti0.8O3). Materials Chemistry and Physics 213:
482-491.
Mondal, T., Majee,
B.P. & Das, S. 2017. A comparative study on electrical conduction
properties of Sr-substituted Ba1-xSrxZr0.1Ti0.9O3 (x = 0.00-0.15) ceramics. Ionics 23: 2405-2416.
Öksüz, K., Sen, S. & Sen, U.
2015. Microstructural evaluation and characterization of solid- state reaction
of B2O3 doped BaZrxTi1-xO3 ceramics. Journal of the Australian Ceramic Society 51: 137-143.
Parhi, C.C., Thirumalasetty,
A.B., James, A.R. & Wuppulluri, M. 2023. Relative
investigation on microwave-assisted Zr-modified PbTiO3 and BaTiO3 ferroelectric ceramics for energy storage application. ACS Omega 8(41): 37752-37768.
Premkumar, S., Sarangapani, R. & Mathe, V. 2021. Understanding the A and B-site
engineered lead-free Ba(1-x)CaxZryTi(1−y)O3 piezoceramics: A perspective from DFT. Journal of Materials Chemistry C 9: 4248-4259.
Promsawat, M., Deluca, M. Kampoosiri, S. Marungsri, B.
& Pojprapai, S. 2017. Electrical fatigue behavior
of lead zirconate titanate ceramic under elevated temperatures. Journal
of the European Ceramic Society 37(5): 2047-2055.
Rojas, V., Koruza,
J., Patterson, E. A., Acosta, M., Jiang, X., Liu, N., Dietz, C. & Rödel, J. 2017. Influence of composition on the unipolar
electric fatigue of Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 lead-free piezoceramics. Journal of the American Ceramic Society 100(10): 4699-4709.
Reyes-Montero, A.,
Ramos-Alvarez, P., González, Amador, López-Juárez, R.
& María-Elena, V. 2017. Dielectric and impedance
analysis on the electrical response of lead-free Ba1−xCaxTi0.9Zr0.1O3 ceramics
at high temperature range. Applied
Sciences 7(3): 214.
Sagdeo, A., Nagwanshi,
A., Pokhriyal, P., Sinha, A., Rajput, P., Mishra, V.
& Sagdeo, P. 2018. Disappearance of dielectric
anomaly in spite of presence of structural phase transition in reduced BaTiO3:
Effect of defect states within the bandgap. Journal
of Applied Physics 123(16): 161424-8.
Sawangwan, N., Barrel, J., Mackenzie, K.
& Tunkasiri, T. 2008. The effect of Zr content on electrical properties of Ba(Ti1−xZrx)O3 ceramics. Applied Physics A: Materials Science and
Processing 90: 723-727.
Shi, X., Hoffman, M. & Kumar, N. 2020. Electrical fatigue behavior of NBT-BT-xKNN ferroelectrics: Effect of phase transformations and oxygen vacancies. Journal of Materials Chemistry C 8:
3887-3896.
Xu, Q. & Li, Z. 2020.
Dielectric and ferroelectric behaviour of Zr-doped BaTiO3 perovskites. Processing and Application of Ceramics 14(3): 188-194.
Yingwei, L. Xiangyang,
C., Dapeng, Z. & Zhipeng,
G. 2020. Influence of domain switching process on the electrical fatigue
behavior of ferroelectrics. Ceramics
International 46(15): 24213-24224.
Yuan, R., Xue,
D., Zhou, Y., Ding, X., Juan, L. & Xue, D. 2017.
Ferroelectric, elastic, piezoelectric, and dielectric properties of Ba(Ti0.7Zr0.3)O3-x(Ba0.82Ca0.18)TiO3 Pb-free ceramics. Journal
of Applied Physics 122(4): 044105.
Zhang, Q., Cai,
W., Li, Q., Gao, R., Chen, G., Deng, X., Wang, Z., Cao, X. & Fu, C. 2019.
Enhanced piezoelectric response of (Ba,Ca)(Ti,Zr)O3 ceramics by
super large grain size and construction of phase boundary. Journal of Alloys and Compounds 794: 542-552.
Zhang, Y., Glaum,
J., Ehmke, M., Blendell, J., Bowman, K. &
Hoffman, M. 2016. High bipolar fatigue resistance of BCTZ lead-free
piezoelectric ceramics. Journal of the
American Ceramic Society 99(1): 174-182.
Zhenhua L., Sirirat, K., Thita, S., Watcharin, J., Boonruang, M.
& Soodkhet, P. 2021. A study of the electrical fatigue behavior
of lead zirconate titanate for micro-actuator application in hard disk drives. Integrated Ferroelectrics 214(1): 11-18.
Zolkepli, M.F.A.B. & Zainuddin, Z. 2017. Structural, magnetic and electrical
properties of barium titanate and magnesium ferrite
composites. Sains Malaysiana 46(6): 967-973.
*Pengarang untuk surat-menyurat; email: hafizhj@ukm.edu.my
|